Network dynamics for optimal compressive-sensing input-signal recovery.
نویسندگان
چکیده
By using compressive sensing (CS) theory, a broad class of static signals can be reconstructed through a sequence of very few measurements in the framework of a linear system. For networks with nonlinear and time-evolving dynamics, is it similarly possible to recover an unknown input signal from only a small number of network output measurements? We address this question for pulse-coupled networks and investigate the network dynamics necessary for successful input signal recovery. Determining the specific network characteristics that correspond to a minimal input reconstruction error, we are able to achieve high-quality signal reconstructions with few measurements of network output. Using various measures to characterize dynamical properties of network output, we determine that networks with highly variable and aperiodic output can successfully encode network input information with high fidelity and achieve the most accurate CS input reconstructions. For time-varying inputs, we also find that high-quality reconstructions are achievable by measuring network output over a relatively short time window. Even when network inputs change with time, the same optimal choice of network characteristics and corresponding dynamics apply as in the case of static inputs.
منابع مشابه
Efficient Image Processing Via Compressive Sensing of Integrate-And-Fire Neuronal Network Dynamics
Integrate-and-fire (I&F) neuronal networks are ubiquitous in diverse image processing applications, including image segmentation and visual perception. While conventional I&F network image processing requires the number of nodes composing the network to be equal to the number of image pixels driving the network, we determine whether I&F dynamics can accurately transmit image information when th...
متن کاملCompressive MUSIC: A Missing Link Between Compressive Sensing and Array Signal Processing
The multiple measurement vector (MMV) problem addresses the identification of unknown input vectors that share common sparse support. Even though MMV problems have been traditionally addressed within the context of sensor array signal processing, the recent trend is to apply compressive sensing (CS) due to its capability to estimate sparse support even with an insufficient number of snapshots, ...
متن کاملHierarchical Recovery in Compressive Sensing
A combinatorial approach to compressive sensing based on a deterministic column replacement technique is proposed. Informally, it takes as input a pattern matrix and ingredient measurement matrices, and results in a larger measurement matrix by replacing elements of the pattern matrix with columns from the ingredient matrices. This hierarchical technique yields great flexibility in sparse signa...
متن کاملCompressive Sensing with Directly Recoverable Optimal Basis and Applications in Spectrum Sensing
We describe a method of integrating KarhunenLoève Transform (KLT) into compressive sensing, which can as a result leverage KLT’s optimality in revealing the sparsity of a signal. We present two complementary results: (1) by using the KLT to find the optimal basis for decoding we can drastically reduce the number of measurements for compressive sensing used in applications such as spectrum sensi...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2014